Algoritma dan Pemrograman: Implementasi Metode Interpolasi Newton
Table of Contents
Langsung saja, saya tidak bahas bagaimana teori dari interpolasi newton. Biar teman-teman sendiri yang mencarinya. Saya hanya memberikan gambaran bagaimana implementasi Interpolasi Newton dalam algoritma dan pemrograman. Berikut algoritma interpolasi newton :
Berikut implementasi dalam pemrograman java :
/** * * @author ABD. CHARIS FAUZAN */ public class interpolasi { public static void main(String[] args) { int data[] = { 250, 235, 241, 230, 0, 238, 240, 251, 254 }; int n = data.length; int len = n - 1; int x[] = new int[n]; double a[][] = new double[n][n]; double fx[] = new double[len]; for (int i = 0; i < n; i++) { x[i] = i; a[i][0] = data[i]; } for (int i = 1; i < n; i++) { for (int j = 0; j < n - i; j++) { a[j][i] = (a[j + 1][i - 1] - a[j][i - 1]) / (x[j + i] - x[j]); } } System.out.println(""); // matriks diperbesar 2x double matriks2x[][] = new double[6][6]; double h_hor = (2.0 / 5.0); double h_ver = (6.0 / 5.0); int n2 = matriks2x.length; matriks2x[0][0] = 1; for (int i = 1; i < n2; i++) { matriks2x[i][0] = matriks2x[i - 1][0] + h_ver; matriks2x[0][i] = matriks2x[0][i - 1] + h_hor; } for (int i = 1; i < n2; i++) { for (int j = 1; j < n2; j++) { matriks2x[i][j] = matriks2x[i][j - 1] + h_hor; } } for (int i = 0; i < n2; i++) { for (int j = 0; j < n2; j++) { double f8 = 0; for (int l = 0; l < n; l++) { double pengali = a[0][l]; for (int m = 0; m < l; m++) { pengali = pengali * (matriks2x[i][j] - (m + 1)); } f8 += pengali; System.out.print(String.format("%.3f",pengali) + ", "); } System.out.println("\nF8() = " + f8); } } } }
Dan seperti inilah tampilan program ketika dijalankan :
Post a Comment